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ABSTRACT

The estimation of time delay and Doppler difference of a signal arriving at two
physically separated sensors is investigated in this thesis. Usually, modified cross power
spectrum coupled with Doppler compensation is used to detect a common, passive signal
received at two separated sensors. Another successful approach uses the cross coherence
to achieve this goal. This thesis modifies these two techniques to model the Doppler
difference via an autoregressive (AR) technique. Analytical results are derived and ex-

perimentally verified via a computer simulation. Performance at high and low signal to
noise ratios ( SNRs ) is examined.

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

aodl

By
Distributior |

Availability Codes

. [ Avzil and/or
Dist Special

Al

{4 S I D




TABLE OF CONTENTS

. INTRODUCTION e e e 1
II. COHERENCE ... i e e e e 2
A, DEFINITION o e 2
B. PROPERTY OF THE COHERENCE FUNCTION .......... ... ..... 2
C. COHERENCE ESTIMATION ... i e 3

D. COHERENCE OF NARROW BAND SIGNALS WITH DIFFERENTIAL
TIME DELAY AND DIFFERENTIAL DOPPLER  ................. ... 4
II. AUTOREGRESSIVE (AR) MODELS ........ ... i, 7
A ARMODELING . 7
B. ADVANTAGESOF THEARMODEL ...... ... . oo, §
C. POWER SPECTRAL DENSITY ..., 8
D. BURG'SALGORITHM ... .. e e 9
E. TFINAL PREDICTION ERROR (FPE) CRITERION ... ............. 11
IV.  DOPPLER AND DIFFERENTIAL TIME DELAY ESTIMATION ...... 13
A. DOPPLER ESTIMATION ... 13
B. DIFFERENTIAL TIME DELAY ESTIMATION .................. 18

1. Differential time delav and differential Doppler estimation using the

CTOSS POWET SPECTIUML  + v v v v v et e e e et e e et a e et et e e 19
a. Specialcase. ... ... .. 20
b.  Modified cross power spectrum. . ....... . i 25

2. Differential time delay and differential Doppler estimation using the co-

6T =5 o2 -2 AR 25
V. RES LTS it i et et et e e e e et e e e 28
A, AR MODEL ..o i e e e 28
B. DOPPLER ESTIMATION it e e e e 31
C. DIFFERENTIAL TIME DELAY ESTIMATION .................. 38
v




VI.  CONCLUSIONS AND RECOMMENDATIONS ... oo 54
APPENDIX A. PHASE DERIVATION ... ... ... .. i 58
APPENDIX B. OUTPUTOFBPF2 ... ... .. i 57
A. FULL INFORMATION CASE(NPOINTS) ... ... ..o L. 57
B. PARTIAL INFORMATION CASE ( N-1 POINTS ) ... o 58
C. PARTIAL INFORMATION CASE(N-KPOINTS ) ............... 38
APPENDIX C. AMPLITUDE COMPARISON ... ... ... .. oot 59

APPENDIX D. CONTOUR PLOTS OF MODIFIED CROSS POWER SPEC-

TR 6l
APPENDIX E. MODIFIED CROSS POWER SPECTRUM PROGRAM ..... 68
APPENDIX F.  COHERENCE PROGRAM ......... .. ... i, 70
LISTOF REFERENCES ... o 78
INITIAL DISTRIBUTION LIST ... 79




Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure 2

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

e N bW

nd pmd hmet b
L b = D

i

o
hn

16.

LIST OF FIGURES

Coherence estimation block diagram. .......................
Coherence estimation block diagram (reinterpretation). ..........
Coherence estimation block diagram usiig the FFT. ............
Coherence estimation block diagram using an AR model. ... .....
AR filteroforderp. ...... ..

Receiving signals at sensor 1,2 (S\NR =100, no differential delay).

AR model and its driver source. ............. .. ... ...
Two signals, 0 second delay at the sensors. ...................
Two signals, -1 second delay at the sensors.  ..................
Modified cross poveer spectrum block diagram. ................
AR model of coherence. ........ ... ...
AR model performance test 1 (SNR=20dB). .................
AR model performance test 2(SNR=20dB). .................
Power spectrum of the BPFl output. .......................
Power spectrum of the BPF2 output. . ...... .. ... ... .......
Cross power spectrum of BPIF'land BPF2. ................ ...
Subplot of the cross power spectrum. .......................
Comparison of the Doppler estimation at two different SNRs. .. ..
Subplot of the Doppler estimation. . ........................
Surface plot of the power spectrum. ........................
Contour plot of the power spectrum. . ......................
Maximum pPOWer SPECtIUML . .o v v ittt et ettt nen
Maximum power spectrum of the transfer function. ............
Variance of the driving noise. . ........ ... ... ...
Maximum modified cross power spectrum of the transfer function.

Power spectrum of the transfer function (surface). .............
Power spectrum of the transfer function (contour). .............
Surface plot of the coherence. ............. ... ............
Contour plot of the coherence. . ........... . ... ... ...,
Estimation using the contour shape (low SNR). ...............

Contour plot (noise in channel-l only). .....................

vi

0T
. 19

| B oS S oS
I e 1D e

[

.. 49

50
S1

~




Figure
Figure

LI
1

fJJ
(9% )

Figure 34.
. Figure 33.
Figure 36.
. Figure 37.
Figure 38.

Figure 39.

Figure 40.

o

Contour plot (noise in channel-2 onlv). ....................... 52
Contour plot (noise Only). ... ..t i i e e 53
Magnitudes of two complex number. ........ ... ... L 59
Contour plot of the modified cross power spectrum (case 1). ........ 62
Contour plot of the modified cross power spectrum (case 2). ........ 63
Contour plot of the modified cross power spectrum (case 3). ........ 64
Contour plot of the modified cross power spectrum (noise in channel-1

o3 01 65
Contour plot of the modified cross power spectrum (noise in channel-2

NN ) e e e 66
Contour plot of the modified cross power spectrum (noise only). ..... 67

vii




ACKNOWLEDGEMENT

I wish to gratefully express my appreciation to my thesis advisor, Professor Ralph
Hippenstiel, for his invaluable efforts and patience in assisting me through my research.
I also want to thank my wife Young Hi who made studving easier and our stay in
Monterey very pleasant.

vill




I. INTRODUCTION

This thesis investigates the use of autoregressive (AR) models for estimating the
Doppler difference and differential time delay by processing of a narrow band signal
emitted from a moving source and received at two physically separated sensors. [f the
signal is received at two different geographical positions even in the presence of uncor-
related noise, then. depending on the signal strength and duration, it is possible to esti-
mate the differential time delay.

Because the source is moving, the signals that are received at the sensors mav have
different frequencies due to the Doppler effect. To obtain accurate differential time de-
lay estimation, Doppler difference compensation is usually required.

This compensation can be implemented by using frequency shifting of the narrow
band components of the received signal. This frequency shift can be obtained using a
Fourier transform. In this thesis we use an AR model to detect the frequency shift.
Using this Doppler compensation, an estimate of differential time delay can be obtained.
Estimating the delay and Doppler using an AR mode] can be interpreted as a form of a
narrow band coherence procedure, provided the estimations are properly normalized.

This thesis 1s arranged in six chapters and six appendices. Because the estimation
of the time delay and Doppler is intimately related to the coherence between two trans-
formed complex signals, an extensive investigation of coherence is given in Chapter 11.
In Chapter I[11, AR models. advantages of AR modeling, and AR model order selection
are presented. Chapter IV 1s devoted to the analysis and the processing of noisy signalbs
to estimate the differential time delay and tl.c Doppler difference. To estimate the dif-
ferential time delay. two approaches are pursued. AR model performance. Doppler es-
timation and two types of time delay estimation are examined in Chapter V. In the last
chapter some general conclusions of the work carried out in this thesis are presented. and
some suggestions for future investigations are given. Computer simulation programs are
included in Appendices E and F.




II. COHERENCE
A. DEFINITION

The coefficient of coherence between two wide sense stationary random processes
1s the normalized cross power spectral density function defined by Wiener [Ref. 1: p. 12]
as

Gx_v(f)
N 4 Gxx(f) Gy y(/)

o) =

where f denotes the requercy (H:),
G,,(/) 1s the cross power spectrum between x(f) and y(s) ,
G, (/) denotes the auto power spectrum of x(r) , and
G,,(f) denotes the auto power spectrum of (1) .
Despite some confusion in the literature. Wiener intended for the coefficient of co-
herence to be complex. This is apparent since he discusses both the modulus and the

argument of the coefficient of coherence.

B. PROPERTY OF THE COHERENCE FUNCTION
The power spectral density matrix Q(f) is positive semi definite. Therefore, for two

random processes x and y. we see that

det [O(N]= det [?‘8 g*ﬂ} >0 (2.2)
X ¥y
['or rea] processes we have G,,(f) = G,,(f) and thus
Gex(NGo() = 1 G 20 (2.3)
where * denotes the conjugate of a complex number. And
GGy 2 1G I (2.4)

Furthermore. G, (/) and G, (f) are nonnegative, real functions of frequencv. When
G..() and G, (f) are strictly positive definite ( 1.e., G, (G, (f) >0 ), Eq. (2.4) can be di-
vided by G, ()G, (/) without changing the sense of the inequality.

1% ]




This provides as an upper bound

t9
n
<

PNGIES! VS (2.

and since the magnitude of any complex number is greater than or equal to zero, we

have the lower bound

0< v, <1 (2.6)

The magnitude of the coherence function is alwavs between zero and one. It is zero
if the processes x(r) and j(z) are uncorrelated and it is equal to unity if there exists a
linear relationship between x(r) and 3(¢) . In order to define the coherence it is necessarv
that the numerator and denominator of Eq. (2.1) are not simultaneously equal to zero.

Coherence is not defined if either auto spectra is zero.

C. COHERENCE ESTIMATION
If X(f) denotes the Fast Fourier Transform (FFT) of the / th segment of x(n) at

frequency f; . then the spectral density estimates are given by [Ref. 2: p. 22]

\

AREYNPVIAIL (2.7)
=1
.
=1
A
G = 2) L Y1 (2.9)
=1

. _ 1

where o = NTE

.V = number of segments,
T = segment length, and

J; = sampling frequency.

Finally the coherence estimation is




Golfi)

\": GxxU}c)Gy)'(ﬁc)
N

Exmo Y;(f) (2.10)

=1
N Al
\/ZIXWPZI AR
=1 =]

D. COHERENCE OF NARROW BAND SIGNALS WITH DIFFERENTIAL TIME
DELAY AND DIFFERENTIAL DOPPLER
The output of the band pass filters (BPF1 and BPF2) in Figure 1 are denoted by

X{f,) and Y(f)) respectivelv. Each term represents the Fourier transform of the corre-
sponding time serics evaluated au frequency f, and time /. For narrow band signals a
Doppler shift corresponds to a frequency shift. If a signal arrives at the two sensors
having a differential Doppler shift as well as a differential time delay, then we sce that
a frequency compensation and time delay compensation by the appropriate values tend
to line up the signals in frequency and time. This is accomplished by using an additional
Fourier transform in channel-1 of the processor and a time delay in channcl-2 of the
processor. Mathematically, this can be expressed as

A

men';d(fk)d”
) =—==

PNE AR ALk
=1

=1

Comparing this with Eq. (2.10), we see that we generalized the coherence concept. We
also note that the implementation resembles a correlator. where one of the signals is
frequency compensated and the time delay corresponds to the delay operation of the
correlator.
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Figure 1.  Coherence estimation block diagram.

If the Figure 1 is redrawn as in Figure 2, then it can be interpreted as an FFT
implementation as shown in Figure 3.
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Figure 2.  Coherence estimation block diagram (reinterpretation).
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Figure 3.  Coherence estimation block diagram using the FFT.

But this FFT has a poor resolution. To obtain a better resolution, an AR model

is desirable. This approach is shown in Figure 4.

Xl | gprt AL

’>

QXB——- AR FFT 11 AE) 1.

DELAY AlL) =18 k)G (1"

BPF2
vl v () Y db)

Figure 4,  Coherence estimation block diagram using an AR model.

Figure 1 and Figure 4 represent two different schemes to compute the cohcrence
function. Differential time delay and Doppler diflerence can be estimated by using AR
models in the modeling of the coherence function.




11I. AUTOREGRESSIVE (AR) MODELS

A. AR MODELING
If the following difference equation is satisfied, the resulting structure is called an
AR model of order p. [Ref. 3: p. 177]

r
x(n) = = ) apx(n — k) + u(n) 3.1)
k=1

where x(n) = the signal at instant n,
u(n) = the white noise driver, and
= the & th coeflicient of the AR model.
A realization of the AR model is illustrated in Figure 5.

u(n) » + _/—\‘ x(n)

AR
QObserved
Sequence

Figure 5. AR filter of order p.




B. ADVANTAGES OF THE AR MODEL

The motivation for parametric modeling of random processes is the ability to obtain
better spectral estimates based upon the model than estimates produced by classical
spectral estimation. Both the periodogram and correlation methods can be used to vield
Power Spectral Density (PSD) estimates. The unavailable data or autocorrelation se-
quence (ACS) values outside a given window are assumed to be zero. This kind of an
unrealistic assumption leads to distortions in the spectral estimate.

The advantages of the AR approach are

1. AR spectra tend to have sharp peaks, a desirable feature of high resolution spectral
estimators.

2. AR parameter can be obtained as solutions to linear equations.

C. POWER SPECTRAL DENSITY

Eq. (3.1) can be rewritten as follows

r
x(m) ==~ Y ax(n = k) + u(n)

k=1

20

= thu(n — k) (3.2)

£2=0

where A, = the causal filter impulse response.

Let us take the Z -transform of Eq(3.2).

X)) = HE)U() (3.3)
Rewriting Eq. (3.1) as
P
Zakx(n — k) = u(n) (3.4)
k=0

where @, = 1, and taking the Z -transform gives
A(2)X(z) = L(2) (3.5)

Eq. (3.3) and Eq. (3.5) can be solved to obtain H(z)




H(z) =m {3.0)

and hence

L(z)

X&) =75

(3.7)

The Z - transform of the output sequence {x(n)} is related to the Z - transformation
of the input random process u(n) by {Ref. 4: p. 56]

L, be )
Pold) = XX () =——— 7~ =Pul&)———— (3.8)
z A(z)A (=) A@)4 (=)

The AR power spectral density is obtained by substituting = e into Eq. (3.8)
and scaling it by the interval T.

=Tp, ——— (3.9)

1
Parl)=Tpy~———7 w
4R AN e/ (Naae,(f)

where ¢, = [ 1.e=2*7, ..., e~ T )N
a=[1.aa4a..,a]1"

p., = variance of driving sequence.

D. BURG’S ALGORITHM

In practice, the autocorrelation is usually not available, so one must make an AR
spectral estimation based on the available data samples. The simplest procedure to ob-
tain an AR spectral estimate from data samples would be to produce estimates of the
autocorrelation sequence from the data. These autocorrelation estimates would be used
in lieu of the true autocorrelation sequence in the YULE - WALKER equations to vield
the AR coefficients. However better results are obtained, particulary for short data
segments, by algorithms that obtain the AR model parameters directly from the data,
without explicitly estimating the autocorrelation function.

The Levinson recursive solution to the YULE - WALKER equations relates the
pth order AR parameters to the p — | th order parameters as given by [Ref. 3: p. 211}

a)(n) = a,_y(n) + k,a,_,(p — 1) (3.10)




For n=1 to n=p—1, the reflection coefficicnts k4, can be found by using the

known autocorrelation function for lag 0 to p — 1. So we have

o1
= s (realp =)

kp = ay(p) = —=—— (3.11)

The recursion for the driving white noise variance is given by
2
pp=pp_y(1 = 1k, 1) (3.12)

where p,=r,,(0) .

But the ACS is not available, hence we can not calculate the reflection coefficients.
The Burg algorithm provides an estimate of the reflection coeflicients which in turm are
obtained through a least squares criterion.

The forward linear prediction error is given by

P
el(n) = x(n) + Za;(m)x(n —m) (3.13)

m=]

while the backward linear prediction error is given by
p

eb(n) =x(n-— ad’ - 3.14
PN = p)+ ) a, (m)x(n+m—p) (3.14)

m=1

Substitution of Eq. (3.10) into Eq. (3.13) and Eq. (3.14) vields the recursive relationships

eh(n) = &)_,(n) + kpeb_y(n 1) (3.1

‘I

)
el(my=e\_\(n= 1)+ kyel_(n) (3.16)

At each order p, the arithmetic mean of the forward and backward linear prediction

error power ( sample prediction error variance) is given by

10




P =

lJ'-—ﬂ

N N
[—{- > lp(n)|2+% > leﬁ(n)lz} (3.17)

n=p+1 7 n=p+l

This expression is minimized. subject to the recursion given by Eq. (3.15) and Eq.
(3.16). Thus, p? is a function of single parameter, namely the complex valued reflection

coefficient k,. Setting the complex derivative of Eq. (3.17) to zero

oy . edk

GRelk,) ) eImik,)

=0 (3.18)

and solving for £, vields

-2 Z e'[_l(n)eb_'l(n - 1)

P
by = (3.19)
YoAdomlP+ Y e n—1)?
n=p+1] n=p+1

The estimation of the reflection coefficient represents the HARMONIC mean be-
tween the forward and backward partial correlation coeflicient. where

es(n) = et(n) = x(n) and N = number of data points.

E. FINAL PREDICTION ERROR (FPE) CRITERION

Because the best choice of filter order is not generally known a priori, it is usually
necessary in practice to postulate several model orders. FPE is a kind of criterion «hich
was provided by Akaike [Ref. 3: p. 230]. This criterion selects the order of the AR
process so that the average error variance equals the sum of the power in the unpre-
dictable part of the process and of a quantity representing the inaccuracies in estimating

the AR parameters. The FPE for an AR process is defined as

N+(@p+1)

FPED=b Y= v )

(3.20)

11




where .\ is the number of data samples,

p is order of the filter, and

p, is the estimated white noise variance when using a p th order filter.
The order p selected is the one for which the FPE is minimum.

12




IV. DOPPLER AND DIFFERENTIAL TIME DELAY ESTIMATION

A. DOPPLER ESTIMATION
Let x(1) and y(r) be the signals received by two sensors

x(1) = cos{2n(f + o;)1} (4.1)
1) = cos{2n(f + o)1} (4.2)

where fis the carrier frequency,
o, , o, are Doppler shifts, and
1 is the time variable.

Let /, be the sampling frequency which satisfies the Nvquist theorem. For con-
venience. in all derivations and simulations a sampling frequency of 64 Hz is used. to-
gether witk band pass filter width of 1 Hz. We assume that o, <05 ( i=12 ).
which implies that the signals stayv in the band pass filter regions of their respective band
pass filters regardless of any Doppler shift. Note, these values can be modified to arbi-

trary sampling rates and pass band regions. The sampling rate is given by

L22f+1>2f+2) (i=12) (4.3)

The phase at instant & and sampling time interval T are given by

2r(f+ 2k
p=—"—"F—" 4.4
x¥k _/; ( )
2ﬂ(f+ az)k _
= — 4.5
yd’k f; (4.5)
] ,
T=—1 (4.6)
5
Let x(n) denote the sampled analog signal x(¢} | ..r then
x(2 + m) = cos(2n(f + &) = + ;) (4.7

3

13




y(n+ m) = cos(2n(f + a,) L5 y®Om} (4.8)
s

The derivations of Eq. (4.7) and Eq. (4.8) are given in Appendix A.
These signals, {x(n)} and {y(n)}, are processed to detect the Doppler difference .
Let BPF1 be the band pass filter centered at f; and BPF2 be the band pass filter centered
at f; (where f, might equal f| ). .\ data points are processed in the band pass filters, to
generate one output. The inputs to BPF1 and BPF2 at time m are vectors X,(n) and
Y, (n) , respectively. The size of the input vector to the filter is the number of data points
taken during 1 second (i.e., the number of points processed in the filter = N'=f ). The

input vectors are denoted by
Xpp(n) = [x(m), x(m + Doy x(m + N = 1)] (4.9)
Y, (n)=[(m),y(m+ .., x(m+ N—1)] (4.10)

The filtering 1s performed using FFTs , where successive FFT outputs are generated at
the input data rate. The BPF2 output is conjugated.

To avoid the complexity the following four complex constant variables are defined.

N-—-1

A= Zcos{Zn(f+ al)fi}e“ﬁ’f?\’ (4.11)
n=9_ s
N—-1 "

B.= ) sin{2a(f+ o) = }e VN (4.12)
n=0 ‘/;
A=l n

Ay= ) cos(2n(f+a;) L} (4.13)
n=0 '/;
N~1 n

B, = Zsin{Zn(f+ o) -}’— Wkich (4.14)
n=0 $

At instant m the complex output signal of BPF! can be calculated as follows

14




AN=1

o
XN = Zcos{}!n(f+ o) = + x‘l”m}e_ﬂ"f 2

n=0 s

5
A=) A=)
n=0 n=0 s
= A, oS P, — By sin ¢,

_ A e/xom + e-}xwm B e/xom — ‘,—Jxém
= fx 2 - Px 2J

"1. +/Br ) Ax —jBx
= X 2_ eix@n. + ———————— e

_ AHiB e,-wifrx_)m A, —jB,

) s D)

o

The complex signal X, (f) contains two frequencies with different amplitudes.

= Z[ cos{2n(f+ a,) —f”- } 0S 1,y — sin{2n(f+ @) 2 } sin pple 2T X

=
-2 S

= cos x¢>chos{2n(f+ o) 217 X — sin x¢pzZsin{2n(f+ o)) -}’— Je™
5

(4.15)

To understand the character of X,(f) , it is important to evaluate which is the

dominant term in the above expression.

N=1
T
Ax /B = y[ cos{2n(f+ o)) == ) 4 sin(2x(f + o) S e AN
d 5 ;

n=0
N=1

- e/Z:(f+ 2) 7',1—6—]2:[%
; .

n=0
N—1

E i LR
e/2r:1 S

n=0

]__(/2"1
| — 7

(4.16)




N1

A —jB, = Z[ cos{2n(f + a,) -;—} —j sin{2r(f + o;) j’,—’ Ve ¥
n=( d s
N—1

9= B el

e-f2~(/+ 1l)j;e 727
n=0 (3.17)
N—=]

v n
e—j‘.(2f+ 11) v

[ — e—j2::‘

| — oA
From Appendix C

| A, +jB | > | .4, —jB,| (4.18)

A, +/B, . i X
Therefore ——=——e¢»= is the dominant term of .Y, (/).

P

In similiar wayv, the complex output signal of BPF2 can be calculated as follows

N-1

. m
Y. = Zcos{?_n(f+ %) R +}¢m}(J‘..f L
rn=3

s

N-1
= Z[ cos{2r(f + 2- )f } €05y, ~ sin{2n(f + 03) = } sin _,.q‘),,,]e"z’f%
rn=0

Js
A=) N=1
=L . n o\ =j2z==
= 05 ¢, cOS{27(/+ ) o }e’ ¥ —sin by ) sin(25(/+ 23) L e
n=i n=0 s

. {4.19)
= A, cos ,$,, — B, sin ;¢

e

¥ 2 y 2j
— A +.lB e/o AV —JB)' e—j)o"'
2
_ A, +JB‘ A HBy oo 7 (/-u) A, —jB, 16 2
= ————2 e f‘

The complex signal Y,(f) contains two frequencies with different amplitudes.
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Even though Y, (/) is similiar in form to X (), it is not obvious which term is dom-

inant.

5

N—1
Ay +jB, = Z[ cos{2n(f+ ay) = } 4/ sin{2n(f + ay) - }]2T N
.) h)

N-]

= Zei2:(f+ x,) fi,enrf_):_

n={)
Nl

4.2
= Eeizr(zﬂ 13)% (4.20)

n=0

]l — p/’2:(2j'+ 75)

. : !
~=(2f L) ——
I — €'/2 (24 13) S

1 — t,i2712
| = S+ 1)~
No
. . 1 .- n j2af 2
A, —jB, = E [ cos{2a(f + o) = } —/ sin{2=(f + o,) == }]¢ /X
o=l s ]
A=)

o LIPS
_ ¢ -j27(f+ 23) T (’/2 f.\.

n=l) (4.21)
N—1
e N
= e—,u..:xz ~\—
n=0
1 = (’—j2r::

1 _ e-er.'zz —}\—
From Appendix C
| 4, ~jB,| > |4, +B,] (4.22)
A —iB

Therefore ——2——3- e>*n is the dominant term of Y.(f).
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Since the two output sequences {.\,(/)} and {¥,(/)} have two sinusoidal components
each, their product {X, (1Y, ()} has four sinusoidal components. The four {requencics

are
(o) = a3) (o) — 01)) (2f+ oy + a,) (2 + o, + o)
Oy =2r— Wy =2 ———— Wy =2 ————————— @y = -2 ———————
1 Js 2 S } S ‘ s

with w, the sinusoid with the largest amplitude and w, the sinusoid with the smallest
amplitude.
The product of the output of the filters is given by

. xS A' +JB : A —‘]B ~/y®m
Am(f))mw = X > X glx¢m y 5 y e 3 +F((Zl, Oy x¢mu}v¢’n)
(A +B A, —jB, (4.23)

W e
- e/(xd’m yém) +1'_(71. a21 x(bm‘ )'(bm)

4

where Fla,, 2. ,9,, ,¢.,) represents the three low amplitude frequency terms.

When using the AR model as described in chapter I1I, at a high S\NR ( i.ec.,
SNR —= oo ), a dth order AR model detects all of the four frequencies given above.
When the SVR is low (i.e., 20 dB ), onlyv one dominant sinusoid is detected with fre-

quency

2n(f+ a)) N 2rn(f+ oy)

s Js

(o) — o3)

s

Cl)l =
(4.29)

=2n

Since we can detect w, and know the value of £, , @, — &, can be estimated by using an
AR modecl.

B. DIFFERENTIAL TIME DELAY ESTIMATION

To detect and localize a target, it is important to find the differential time delay of
signals arriving at two sensors. Let us assume that signals at the two sensors are as
given in Figure 6 ( i.e.. zero differential time delay ) For the remainder of the figures. the

time avis is scaled to be 64 points per second.
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Figure 6.  Receiving signals at sensor 1,2 (SNR= 100, no differential delay).

We can estimate the differential time delay and differential Doppler using two dif-
ferent approaches. The first approach uses the cross power spectrum while the second
approach uses the coherence.

1. Differential time delay and differential Doppler estimation using the cross power
spectrum.

Figure 4 shows the block diagram of the coherence estimator using AR mod-
eling. In this figure, the output of the FFT can be interpreted as the cross power spec-
trum. Using this cross power spectrum, we can estimate the differential time delay and
the differential Doppler. But when we use the highest peak of the cross power spectrum,
the peak i1s somtimes not detected at the proper time delay nor at the proper Doppler
shift. We will show a special case in which the peak of the power spectrum is not de-

tected at the proper time delay nor at the proper Doppler values.
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a. Special case.

For our test case the data duration is six seconds, two seconds of the noisv
signal and four seconds of noise only. Linear transformation of this data leads to one
of three types of outputs. The first type represents full information, while the second
type represents partial information. The third type represents a noise only condition.
Generally when two signals are lined up in time, the AR model should give the highest
output power. But this is wrong in some cases. In the full information case, the mag-
nitude of transformed signal is high and constant. For some reduced information case,
even though the magnitude of the transformed signal decreases, it still mav have large
magnitude of spectral components. This phenomenon can be explained as follows.

Define two functions depending on k

N-l—k
> T _
kA, = Z cos(2nf2fi)e’2"f N (4.25)
n=0 s
N=l-k
By= Y sin(2nfy ) F 1.26
k)"‘_JS’n("fzf) ; (4.26)
n=0 s

where fi=f+a,.
k denotes the number of lost data at BPF2 input vector.

We assume that we know when the BPF1 signal starts. If this information
is not available, we need to examine the signal at the output of BPFI, to obtain a can-
didate time frame. Consider the input of AR model as shown in Figure 7.

The input data size to the AR model is the number of linearly transformed
data points during a given period (1.e., input size is .V = f; ). The BPF1 output represents
full information (i.e., each output element is produced from the signal information

points). Therefore. as shown in the previous section, the dominant output sequence is

ke, kO kP kL., kO (4.27)
where
2na
k1=—;— 4 - (4.28) :
l_elzftle
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Figure 7. AR model and its driver source.

(1) 0 second delay case. We already defined the input vector X, (n) and
¥.(n) to BPF1 and BP¥2. This vector can be interpreted as a time snap shot. Lach
output of the BPF requires N input points. If we require .V output points from the BP'T,
even using maXximum overlap in the processing, we require at least 2\ — I points at the
BPF input. Figure 8 shows the 2V input to BPF1 and BPF2. Both 2.V input points
contain the signal and some noise. As shown in Figure 8, in the zero delav case, the two
input vectors X, () and Y,(n) (0 < m < N ) provide full information. So the lin-
early transformed output X,(f;) and Y,(f,) also represent full information.

The dominant part of the BPF2 output is the sequence

ke ™, kye P ke ke L kye It (4.29)
where
—j2ﬂ52
S (4.30)
2 1 e—jzrfxz"\—.
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Figure 8.  Two signals, 0 second delay at the sensors.

The dominant input sequence to the AR model is given by
{(kky U720 k=012, N -1} (4.31)

where the magnitude is &4,

72, -1 second delay case.  Figure 9 shows the 2.\ input to BPFI and
BPF2. The 2.V input data points of BPF1 contain the signal and noice. During the first
XN points the input to BPF2 contains the signal plus noise while during the second .V
points only noise is present. The input vector X, (n) of BPF1 contains full information,
but input vector Y,(n) of BPF2 does not contain full information. In the Yy (n) case,
every element of Yy(n) is full information. But when & is not equal to zero then },(n)
consists of v — & information elements and & noise elements.
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Figure 9.  Two signals, -1 second delay at the sensors.

The output from BPF2 represents partial information while the out-
put from BPF1 represents full information. The BPF2 output sequence is given by

A, + A, =B, .
(L Ry Jk Y o -‘—Lz—"—'”e‘fy"*, k=01,.N—1} (4.32)

The derivation of Eq. (4.32) is given in Appendix B.

. A,—JB,
Assuming that ———2

e+ is the dominant term, which is a valid assumption for our
test case with f,=64Hz, f=23Hz, o,=0.4Hz and o,=0.001Hz, then the input se-
quence to the AR model is dominated by
kA} Jk ) ) .
{k, ——.,—-—e’ k=00 k=0,1,2,.....,N = 1} (4.33)

-

with &, is defined earlier ( Eq. (4.28) ).




The magnitude of dominant input sequence is obtained by examining

N-l—k
2
kdy —jkBy = Z [ cos{2n(f+ 04)} —j sin{2x(f + az)}]elz“f N

n=_
N=1-k

- B o
= e—ﬁ"(f+ aZ)Le/Z"f kY

n=0

N—1-k (4.39)
_ e—jzzaz-%
n=0
o N—k
l - e—jz’- % Ay
N g, L
1 — e—j-..:: S

When we compare the magnitude of the sequence in Eq. (4.27) and the magnitude of the
dominant term in Eq. (4.32), the magnitude of |&,| > |4, —j.B,|/2 where

ke = _!_ 1= e-—j2:12
272 i,
[ — e 0y
and
N[
. 2._—--_._—
ey =By ] 1—e / Noo;
5 =5 v 1
- s —f2mx -
I P . (4.35)
1 il [ eV 2ray ==
=75 ) 1 ¢
“~ 1 — e—j2z12T 1 e_ﬂ”’ZT

We note that Eq. (4.35) has two frequencies ( 1.e., 0 and _o% 2n).

1

The magnitudes of both terms are -
|1 = emy

Now, note that as long as |a,| < L, then the magnitudes of both terms in Eq. (4.35)
are larger than | 4,|

Due to the symmetry a positive delayv results in a similar reponse to a negative delay, and

hence Eq. (4.35) holds also for delay of +1 second. Equation (4.35) can be interpreted
as having large responses at shifted Doppler values at a delay of 1 second and a delay
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of —1 second. Proper delay can not be established nor can the Doppler value be estab-
lished. This cross power spectrum algorithm will not give good information about either
Doppler difference or time delay.

b.  Modified cross power spectrum.

To detect the signal, input signals to the AR model should be preprocessed
as shown Figure 10. If the BPF2 output signal is magnitude normalized, then this nor-
malized signal retains good phase information. When we normalize the BPF2 output,
one of two conditions can occur. The first condition ( i.e., synchronized ) leads to the
magnitude normalization of Eq. (4.29) and provides accurate frequency and delay esti-
mation. The second condition occurrs when the signal in channel-2 is not lined up in
time with the signal in channel-1 ( i.e., during the delay search ). Under this condition
smaller peaks in the time Doppler plane appear at incorrect values of time delay and
Doppler. Above 70 dB SR, the correct peak is the dominant one and allows proper
estimation. Information from contour plots can be used at values of SNR between 70
and 10 dB ( see Appendix D ).

f
xin) BPF1 X, (h)

ELAYH NORMALIZE |——

Y6 Yo b Yot

v i8]

Figure 10.  Modified cross power spectrum block diagram.

2. Differential time delay and differential Doppler estimation using the coherence.
Another way detecting the signal is normalization of the AR output with the
squared root of the product of P,.(f) ( auto spectrum of x ) and P, (f) (auto spectrum of
» ). This can be done using two additional AR models as shown in Figure 11.
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Figure 11. AR model of coherence.

Using the AR approach, p,, , 0., » p,, » and AR coeflicients can be ob-
tained. Therefore we get

Tpyx

P.()=
R V7T

(4.30)

Toyy

P () =—"—
»y 'Ayy(f)lz

d.37)

Tpxyxy

P () = ——————
xyxy | Axmmlz

(4.38)
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P.(f) 1oy (4.37)
. = — i
¥y 1 4,0)] )
Toryxy
P (f) = —22 (4.38)
Xyxy I Axyx)-(f) l 2

where P_(f) is the power spectrum of X,
P, (/) is the power spectrum of Y, ,
P,..(f) is the power spectrum of .\;}, ,,
A,.(f) is the AR power spectral density of X,
A,(f) is the AR power spectral density of Y} ,,
A,(f) is the AR power spectral density of X}, cross term.
O, 18 the driving noise vanance of .Y, ,
p,, i the driving noise variance of Y/_,,
P 18 the driving noise variance of A}}; ,, and

-
Js

We obtain a coherence estimate from the three power spectra, by assuming that
IPX_\'mlzz ' Px;.'x}(./), .

{\'2 _ | Px_vm I 2
LT PP,
o , (4.39)
~ I P xyx_v(/) I _ -1_ P xvxy I A xxU)A ).}.(f) |
- [ PexN PN T PxxPyy | gD
N \/L Pxyxy l Axx(/)"‘y_v(f) ‘ 2 (4 40)
/ T PxxPyy | A (D] .

This approach provides good information about the differential time delayv and
differential Doppler down to S.NRs of 20 dB.
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V. RESULTS

This chapter presents graphical results obtained by applving the analytical results
of the previous chapters to specific examples and carrving out the required computations
on the computer.

A. ARMODEL

This section provides the AR model performance tests. As we discussed in chapter
I11, Burg’s algorithm is applied to this AR model. The FPE criterion is use to find the
AR model order. Figure 12 is the power spectrum of two test signals sin(w,Tn) and
cos(w, Tn) . Figure 13 shows the power spectrum of two other test signals sin{w,7n) and
cos(w,Tn). Both sets of test signals in these figures have an SNR of 20 dB. The f(re-
quency f,i1s 13.45 Iz and f,is 2345 Hzand Tis —()IT second.

Theoretically, the power spectrum of these signals have two impulse functions at f
and —f (i=1,2). Figurcs 12 and 13 show experimental results agrecing with the
theoretical results. Figures 12 and 13 indicate which frequency has high power but thev
provide no phase information.

The AR model is sensitive to frequency but is not sensitive to the phase. For any
selection of frequency f which satisfies the Nyquist theorem, the AR model provides
good frequency estimation provided the SNR is suflicient large.
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Figure 12. AR model performance test 1 (SNR=20 dB).
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Figure 13. AR model performance test 2 (SNR= 20 dB).
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B. DOPPLER ESTIMATION
In section A of chapter 1V, we discussed five items.

1. BPFI and BPF2 outputs have two sinusoidal components each.

ro

For BPF1. the dominant frequency is designated as w, and for BPF2. the dominant
frequency is designated as w, where

2a(f+ o)
w, = f

"277(_f+ 0.2)
A

3. The power spestrum of cross term of BPF1 and BPF2 has four components which
can be detected in very high SNR (i.e. SNR =100 dB).

4. When the SNR is low (i.e. SNR =20 dB). only one dominant frequency compo-
nent 1s detected.

o

The dominant frequency of the power spectrum P, (f) corresponds to the difler-
ential Doppler frequency.
Figure 14 shows the power spectrum of the BPF1 output when fis 13 Hz, o, is
0.45 Hz. and f is 64 Hz. Figure 15 shows the power spectrum of the BPF2 output
when fis 13 Hz, 2, is =045 H:z, and f, is 64 Hz. As expected both figures show two
spectral lines when the SNR is 100 dB. The dominant frequencies are located at fequal
1343 /Jiz for BPF1, and at fequal —12.55 H: for BPF2. Figure 16 shows the power
spectrum of the cross term of BPF1 and BPF2. This figure shows four spectral lines at
an SNR of 100 dB. while only one dominant frequency is detected at an S\NR of 20 dB.
Donunant frequencies are alwayvs located between —1 Hz and I H:z. Figure 17 shows
a subplot of Figure 16 for frequency between —1 Hz and 1 H:. This figure shows the
dominant frequency f=.9 H: and the smaller spectral component at fx —.9 H: for an
SNR of 100 dB. Only one dominant frequency can be detected at fequal 0.9 H: for an
SNR of 20 dB. Doppler difference from the dominant spectral component corresponds
to the true Doppler difference o, — o, which is 0.9 H:

Figure 18 shows a comparison for S.NR of 20 dB and 10 dB. Figure 19 is subplot
of Figure 18 for -1 H:<f< | H:. From this figure, when S.VR = 10 dB, the dominant
frequency is shifted a little bit from the true Doppler difference. We have shown the five
issues as we have discussed in the previous chapter. In summary, for SNVRs greater than
or equal to 20 dB. the power spectrum of the cross term provides good Doppler esti-
mation.
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Power spectrum of the BPF1 output.
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Figure 15.  Power spectrum of the BPF2 output.
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C. DIFFERENTIAL TIME DELAY ESTIMATION

In Chapter 1V section B.1.a we discussed the problems associated with using un-
normalized quantities and suggested two possible approaches to solve the problem. In
this section we will show that for the case of |o,| < -(1:- H: | the power spectrum of a
nondelayed signal is smaller than the power spectrum of a signal delaved by one second
( i.e., see discussion following Eq. (4.35) ).

To estimate the time delay, we suggest the two different approaches. The first ap-
proach is the normalization of the BPF2 output. The second approach normalizes the
cross term P, (f) with the power spectrum of BPF1 P, (f) and the power spectrum of
BPF2 P,(f) through the equation defined by Eq. (4.40).

The following figures are simulations for f=23 Hz, o0, =0.23 Hz, o,=-0.02 Hz,
T=zlj- second. delay of 0 and an S.NR of 100 dB. Figure 20 shows the surface plot of

P..(7) while Figure 21 shows the contour plot of P,

). Figure 22 shows the cross

section plot of Figure 20 with respect to the DELAY axis. This figure shows that the
power spectrum has a spurious peak at delay of one second. At the proper delay (i.e.,

0 second delay) P, (/) has a relatively small value.

|
. A 01 .
maximum power spectrum term of the transfer function and Figure 24 shows the driving

P...(f) is affected by two terms. namelyv p, and . Figure 23 shows the
noise variance. At a delay of + I second and of 0 second the transfer function shows a
peak while the variance of driving noise has small value. In this case, P,,,.(f), the product

of the form p at 0 second delay has a smaller value than that at any other

|

AL - .
delay location. Using the scheme shown in Figure 10, we normalize the BPI'2 output
and present the result in Figure 25. We can detect the proper time delayv and the proper
Doppler difference. Figures 26 and 27 show the corresponding contour plot and the
power spectrum of the normalized cross term. For any value of time delayv and Doppler
difference, this approach provides good information about differential Doppler and dif-
ferential time delay provided the S.\NR is greater than or equal to 70 dB.

Results of the second approach ( Figure 11 ) are demonstrated in Figures 28 and
29. This approach also gives good information about differential time delay and differ-
ential Doppler. This approach provides good time delay and Doppler estimation for
SNR greater than or equal to 20 dB.

If we use the contour shape, we can also estimate the differential time delay and
differential Doppler for SNR of less than 20 dB. Differential time delayv and differential
Doppler estimation can be extended down to S.VRs of about 0 dB when using the con-
tour of the coherence surface. Figure 30 is a contour plot of using this second approach
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( 1.e.. coherence approach ) for «; = 0.23 Hz, o, =~ 0.02 H:z, Delay =0, and an S\NR of
0 dB. The contour shape of the second approach has the shape of the letter X. When
the S.VR 1s greater or equal to O dB, the proper time delay and Doppler difference seems
to be located at the cross over point of the X. When the SR is less than 0 dB, the
contour shape does not shows an X clearly. In the coherence approach, Figure 31
provides the contour plot, with channel-1 containing only noise and channel-2 contain-
ing signal plus noise ( SVR =0 dB ). Figure 32 shows the contour plot, when channel-2
contains only noise and channel-1 contains signal plus noise ( SNR=0 dB ).
Figure 33 shows the contour plot, when both channels contain noise only. The above
three figures do not show an X clearly, hence do not allow signal detection for esti-
mation of any parameter. Using this information, we can distinguish the signal combi-
nations from the noise combinations.

When we estimate the time delay and Doppler difference using the contour plot, the
modified cross power spectral approach has some problems as discussed in
Appendix D.
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Surface plot of the power spectrum.

Figure 20.
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CONTOUR PLOT OF POWER SPECTRUM
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Figure 21.  Contour plot of the power spectrum.
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MAXIMUM POWER SPECTRUM
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Figure 22.  Maximum power spectrum.
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MAXIMUM POWER SPECTRUM OF TRANSFER FUNCTION
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Figure 23.  Maximum power spectrum of the transfer function.
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Figure 24.  Variance of the driving noise.
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Figure 25.  Maximum modified cross power spectrum of the transfer function.
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POWER SPECTRUM OF TRANSFER FUNCTION
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Power spectrum of the transfer function (surface).
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POWER SPECTRUM OF TRANSFER FUNCTICON
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SIXV NNYLI3dS ¥3IMOd .

Power spectrum of the transfer function (surface).
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Figure 27.  Power spectrum of the transfer function (contour).
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COHERENCE

Figure 28.

Surface plot of the coherence.
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Figure 29.  Contour plot of the coherence.
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i‘igllre 30. Estimation using the contour shape (low SNR).
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Contour plot (nvise in channel-2 only).
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NOISE ONLY
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Figure 33.  Contour plot (noise only).
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V1. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, the differential time delay and differential Doppler are estimated using
two different approaches. The first approach uses a modified cross power spectrum al-
gorithm while the second approach uses a coherence algorithm. In both cases
autoregressive modeling of the required cross spectral component is used. The differen-
tial ime delay and Doppler difference can be estimated using a threshold at high SNRs
and a contour plot at low SNRs.

At high SNRs (i.e., SYR =70 dB ), the first approach locates the dominant peak
at the proper time delay and the proper Doppler. The second approach utilizes two
additional AR models and two additional FFTs to obtain the autopower spectrum of
channel-1 and channel-2. At moderate S.\NRs ( i.e., SNR = 20 dB ). the second approach
has the highest coherence peak at the proper time delay and Doppler frequency. When
the $.\'R > 0 dB, the contour plot of the coherence has the shape of the letter X. The
differential time delay and Doppler difference can be located at the cross over point of
the X. In high S.VRs we can use the highest peak to detect the time delay and Doppler
frequency using either approach. When we use the contour plot, the information about
time delay and Doppler depends on the location and the form of the cross over point
of the X.

We can estimate the differential time delay and differential Doppler using the AR
modecling of coherence. But we can not get the numerically correct value of the coher-

ence coeflicient. The following three points are recommended for future study.

1. To get a cross power spectrum, we assumed that | P, ()|=]P,(N]*. This was
required since we can not get a cross power spectrum using an AR model. Im-
provement of the cross power spectrum estimates using an AR model can lead to
improvement of the algorithm.

[

Our first approach is not normalized by the auto power spectra. If we find the
corresponding auto power spectra, we can also obtain a coherence coefficient esti-
mate.

To get a better information at a low S.NR, we need to study the characteristics of
the contour plots.

(¥3)




APPENDIX A. PHASE DERIVATION

Define the phase at instant &.

2r(f+ o))k

Pp = £,

(4.4)

b= ZR(f;- aq)k @5

Let x(n) denote the sampled analog signal x(r)|

t=nT

then

x(n) = cos{2a(f + o;) = j

(a.D)
= cos{2n(f + ‘71)]‘ + xbo}

x(n + 1) = cos{2n(f + a, +1 )

fs
n 2a(f + o)
ﬁ )

.f,; X(bl}

= Cos{2x(f + o (a.2)

= cos{2n(f + ;) =

n+2
Iz }
..7:(f+ 0)2
fs S

./s x¢2}

x(n+2) = cos{2x(f+ o,)

= cos{2n(f+ al) (a.3)

= cos{2n(f + o) =

x(n+ m) = cos{2n(f+ a,) f }
2r(f+ o))m }

= cos{2 n(f+oz)—+ 7

4.7)

= €0s$ ‘.71'([4" 0!1) f x¢m}

Similiarily

55




¥(n) = cos{2a(f + o) =}

= cos{2xa(f + a,) oL+ y®0}
5

J
y(n+ 1) = cos{2n(f + ;) n}- 1 }
2z(f+ 0.2)

= cos{2n(f + «,) =4 _-_f— }
= cos{2n(f + 0,) —;— + 6}

n+2
S5

= cos{2n(f + o) =4
JS

yn+2)=cos2z(f + ay)

}

22(f+ 2,2
S

= cos{2n(f + ;) = + )

5

n+m

7

" n 2n(f+om
= cos{2=(f + a,) A I;
= cos{2z(f + 1) }—l + yd)m}
s

y(n+m)=cos{2x(f+ a,)
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APPENDIX B. OUTPUT OF BPF2

Define two functions depending on k

N=1~k
i ef L
oA = E cos(znjg-j’,’—)a‘”f N (4.
5

t9
‘n
Nasby

Y
n=0

N=1—-k

B= ) sin(znfzfi)eﬂ”f% (4.26)
n=0 s

where fi=f+a,.

A. FULL INFORMATION CASE ( N POINTS)

2\ points are data points at BPF2 input.

N-1
. n jRaf
P = ) cos2afs 2+ 6,0 S
Jy

n="

N1
iner L
N Z{ oSl 22fs =) €08y — Sin(2fs ) sin e N
s 5
n=y

N} Ao
L S S" . —n= 2
= C0S ,9,, S Cos(2rrf2%)e]2" N —sin b, sm(erfz}—i)e 275 b.1)

n=0 3 n=0

= g, COS yb,, — o B, sin @,
_ ev/)‘ém + e‘j_v,on: e,).ém _ e—]).ém
=ody——5 —— =B,
A, +iB, ..
0 SOy
—_— -—;‘1_‘ e/yom +

s '
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B. PARTIAL INFORMATION CASE ( N-1 POINTS )
N — 1 points are data points at BPF2 input.

N=1-1

m(/) Z COQ(-u 2 7*_ + (b,,‘ eﬁ f—~

n=0

N-1-1
= E { cos(2nfy =) cOS @, — sin(2fy = ) sin P17 N IV
=0 /'; fS
‘ Nol-1 N=1-1 .
_ 2-__ . n —j2f'ﬁ
= C0S Py, nz=0 cos "'jzf )& TN sin @, Z;) sm(27zf2f5 Je No(b.2)

=14, c0s ;0,, — 1B, sin ;0

o o ohm P _ o hOm
=4, > - IB) 2
A+ B, . A, =B
3y T o 14y g -
= 3 e 4 — ¥m

C. PARTIAL INFORMATION CASE ( N-K POINTS )
N — & points are data points at BPF2 input.

N=l=k

Yo = Z cos(2nfs - j' »¢’m)€"j—_
\»::]U
Z {coc(:ﬁfs cos y,, — sin( 2nf, = I )sm D} £y
Nol—k No1—k

= COS ;@ z COS(2RﬁTi)€J2:%—Siny¢m Z sin 2rf2f )e_"",\_' (b.3)

n=0 - n=0

= A, cos @, — ¢ By sin o,

B Y S e o
T kT p) T kPy 2
i </
A+ B, A, —j B .
ke2y k2 . k<ty k&Y
= __;—7——’ e/}.ém + __’_2___ e -/y»ém




APPENDIX C. AMPLITUDE COMPARISON

Let C, and C, be the complex amplitude.

2na
C = ._L:i__]_._
1—6’/27:1_1\—'
_ —j2nx
C, = l—e

22 L
| — e—jl:.(Z]+1) N

where || <0.5, and N = 2f+ 1 > 2(f+ «). The numerators of | C,| and | G,| are same,

because the magnitude of the complex conjugate is the same. If we show that

[1—e? | < |1 —e¥»%] | then we can say [ C,| > |C,|. As shown in Figure 34

|1 —er| = |41 and |1 — ev>o-%| = | BI| .

Im

O \1 Re

B ;= 2T /N
Or= =21 (2 f+w)/N

Figure 34.  Mlagnitudes of two complex number.

The smallest angle LIOB is
For positive f

N A N

2n(2f + o)

N =/L104

L1I0B = > l —2-’\’:"—
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2w +a) 20(N-2f-a) 2n(l-0a)

(c.3)




Since |1 —a| > |al.

2n(1 — o)

LIOB = ‘ 3

l dno

=/]0A (c.4)

From Eq. (c.3) and Eq. (¢.d) | 47| < [ BI| , therefore

|C1I > ICzl (C.S)
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APPENDIX D. CONTOUR PLOTS OF MODIFIED CROSS POWER
SPECTRUM

For S.NRs greater than or equal to 10 dB the contour plot of the modified cross
power spectrum algorithm has the shape of a boomerang. The shape of the boomerang
depends on #,. Figure 335 and Figure 36 show the contour plot of the modified cross
power spectrum. The two figures show the boomerang shape and their different di-
rections. For positive o, ( case 1 ) and negative o, ( case 2 ) the opening of the
boomerang is toward the left and right, respectively. In the both cases, we can estimate
the time delay and Doppler frequency using these contour plots. The proper time delay
and Doppler difference can be detected by locating the point of symmetry of the
boomerang. The Figure 37 shows a contour plot when o, is —0.02 H:. Since o, is very
small. the contour plot looks like a straight line. In this case. the differential time delay
and Doppler difference can still be estimated by locating the point of symmetry of the
boomerang ( i.e., center point ). Figure 38 shows the contour plot, when channel-1
contains noise only and channel-2 contains signal plus noise ( 1.e., SNR=10dB ). Fig-
ure 39 shows the contour plot, when channel-2 contains noise only and channel-1 con-
tains signal and noise ( i.e., SR =10 dB ). Figure 40 shows the contour plot, when
both channels contain noise only. Using the modified cross power spectrum technique,
the three tvpes of noise only set ups appear as similiar plots { sce Figures 38. 39 and
40 ). Figure 38 seems to indicate the presence of signals in both channels, while Figures
39 and 40 appear more like noisc. Hence, contour plots of the modified cross power
spectrum do not allow clear identification. In this case, it will be difficult to distinguish
between the noise onlyv situation and a small o, situation.

To use the modified cross power spectrum algorithm at low SNRs ( ie.,
SNR < 70 ), we need to investigate the contour plot some more.
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Figure 35.  Contour plot of the modified cross power spectrum (case 1).
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Figure 36.

Contour plot of the modified cross power spectrum (case 2).
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Figure 37.

Contour plot of the modified cross power spectrum (case 3).
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Figure 38.
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Contour plot of the modified cross power spectrum (noise in channel-1
only).
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Figure 39. Contour plot of the modified cross power spectrum (noise in channel-2
anly).
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Figure 40.  Contour plot of the modified cross power spectrum (noise only).
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APPENDIX E. DMODIFIED CROSS POWER SPECTRUM PROGRAM

VelePe e Yeveve e e e el e e e e Yoo e e edie e dede de e e e e e deeve dede e dedede e e e dededededededesl e dede Sededededededede S e

ot
114

0

main program of approach one.
this program share subroutine with
the main program approach two

wla
1y

le
iy

oO0O000O0

Yt ey e e e e e e e e e e S s e e e e e e e e e s e e e e e e e S e e e e e e e e e e
COMPLEX X(=-128:255),Y(-128:255),A(0:2500),B(0:2500)
COMPLEX BPF1(-128:191),BPF2(-128:191),BPF(0: 100)
INTEGER SNR,BINDEL,DELAY
DATA X,Y,A,B/5770%(0.,0.)/,BPF1,BPF2,BPF/741%*(0.,0.)/
OPEN(UNIT=7,FILE='FILENAME FILETYPE A')
PI=ACOS(-1.)

R A L Ll R L R L L it X I k1
C "
c input part *
c e
c fs - sampling frequency *
c f - carrier frequency ¥
c alphal - doppler effect at sensorl *
c alpha2 - doppler effect at sensor?2 *
c delay - signal receiving time difference i
c between two sensors ¥
¢ SNR - signal to noise ratio *
c iseed - noise generator seed(odd number) w
c n - number of data during one second B
c %
C -------------------------------------------------------------------- £ <

FS=64

F=23.

ALPHAl=, 23
ALPHA2=-.02

DELAY=0

SNR=100

N=64

T=2.*PI*F/FS

ISEED=13
LR el L R 7
Cc %
c input data sampling at two sensors *
c o
[ R R L R k

CALL SIGNAL(X,F+ALPHA1,FS,0,SNR,ISEED,0,0)

CALL SIGNAL(Y,F+ALPHA2,FS,DELAY,SNR,ISEED,0,0)
DO 100 K=-128,191

DO 50 J=K,K+63
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[ A LR L L R N L L R R L LR LR LR il e

C o

c linear transformation using band pass filter

c e

o A Rl A A R A A L R R L A ALY E X [y
. OMEGA=T*FLOAT(J-K)

BPF1(K)=BPF1(K)+X(J)*CMPLX(COS(OMEGA),-SIN(OMEGA))

50 BFF2(K)=BPF2(K)+Y(J)*CMPLX(COS(OMEGA),SIN(OMEGA))

[ R R A R R L NN R R R R RN Xk <
* fol e

c normalization of BPF2 *

c 3

[ LR L L R e R L L R R R R R Y L k) ”©

100 BPF2(K)=BPF2(K)/CABS(BPF2(K))

DO 300 BINDEL=-128,127
DO 200 K=0,N

AR R L R L R L L PR LR k14
c *
c input of AR model ¥
c ¥
[ R R R T T L L I i Sy S b
200 BPF(K)=BPF1(K)*BPF2(K+BINDEL)

CALL CLEAR(A,B,2500)
CALL BURGAR(BPF,N+1,A,IP,VAR)
CALL CHANGEFFT(B,A,11,MAX)
DO 250 I=-32,-1
250 WRITE(7,997)BINDEL,FLOAT(I)/32. ,CABS(1. /B(2048+I))*VART
% CABS(1. /B(2048+I))
DO 300 I=0,32
300 WRITE(7,997)BINDEL,FLOAT(I)/32. ,CABS(1. /B(I))*VART
* CABS(1./B(I))
: CLOSE(7)
STOP

997  FORMAT(1X,I4,2X,E13.6,2X,E13.6,2X,E13.6)
END




APPENDIX F. COHERENCE PROGRAM

C IRl dedle e e el el vedede v dedede e dedeve e e dedeviedede Ao dedede e dede dedede dedededededede de de e dededede de e
.

c e

3 f h e
c main program of approach two -
c e
et dedeSrlenlelededededededede oo dededededededodedededededede dedededededededledededededededededededededededeedededede dedededede

COMPLEX X(-128:255),Y(-128:255),A(0:2500),B(0:2500)
COMPLEX BPF1(-128:191),BPF2(-128:191),BPF(0:100)
COMPLEX AUTOX(0:100),AUTOY(0: 100),SUMXY

INTEGER SNR,BINDEL,DELAY

DATA X,Y,A,B/5770%(0.,0.)/,BPF1,BPF2,BPF/741%(0.,0.)/
DATA AUTOX,AUTOY/202*(0.,0.)/
OPEN(UNIT=7,FILE='FILENAME FILETYPE A')

PI=ACOS(-1.)

[ R R R L L L L ¥
C 7'
c input part *
c v
c fs - sampling frequency i
c f - carrier frequency *
c alphal - doppler effect at sensorl *
c alpha2 - doppler effect at sensor2 ¥
c delay - signal receiving time difference ¥
c between two sensors R
c SNR - signal to noise ratio w
c iseed - noise generator seed(odd number) &
c n - number of data during one second ¥
c 7
[ L T T R D R L P b
ALPHA1=, 23
ALPHA2=-,02
SNR=20
F=23.
N=64
FS=64.
T=2.*PI*F/FS
ISEED=23
DELAY=0
[ R el L L L R LR L Ll et ki 4
c 2
c input data sampling at two sensors ¥
c e
[ L R L L L L T T R %
CALL SIGNAL(X,F+ALPHA1l,FS,0,SNR,ISEED,0,0)
CALL SIGNAL(Y,F+ALPHA2,FS,DELAY,SNR,ISEED,1,0)
DO 100 K=-128,191
DO 50 J=K,K+63
P R L R Y L L %
C "
c linear transformation using band pass filter *
C k)4
AR L Ll L LR et LR LR LR R R il R i *
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OMEGA=T*FLOAT(J-K)
BPF1(K)=BPF1(K)+X(J)*CMPLX(COS(OMEGA),-SIN(OMEGA))

50 BPF2(K)=BPF2(K)+Y(J)*CMPLX(COS(OMEGA),SIN(OMEGA))
100  CONTINUE

SUMX=0.

DO 150 K=0,N
Crmmemeeemmeececemmmecsceseceseseccceeemmemamssesatsascmecmcammmnm.——- *
c %
c finc AR order at sensorl %*
c 2%
(L L L R e L LR e L L R AL E R L R R R L *
150 AUTOX(K)=BPF1(K)

CALL CLEAR(A,B,2500)
CALL BURGAR(AUTOX,N+1,A,IP,VARX)
CALL CHANGEFFT(B,A,11,MAX)
XMAX=CABS(1. /B(MAX))
DO 300 BINDEL=-128,127

DO 200 K=0,N
L e L L L L Rl R e LR R kX4
c
c input of AR model -
c k)
XXX L L il L et R e L AR LY R EE R R LX) <

AUTQOY(K)=BPF2(K+BINDEL)

200 BPF(K)=BPF1(K)*(BPF2(K+BINDEL))
[ LR L A L L L A R R LR R R R EE LR R R i k] 4
c 3
c find auto power spectrum of sensor2 at delay k !
c to
ol L e L L R L R L E LR ] 4

CALL CLEAR(A,B,2500)

CALL BURG(AUTOY,N+1,A,IP,VARY)

CALL CHANGEFFT(B,A,11,MAX)

YMAX=1. /CABS(B(MAX))

(AL AL L R e L A Ll L e L R L LR R LY LX) %
C a'e
c find auto power spectrum of cross term
c k14
c ----------------------------------------------------------------------

CALL CLEAR(A,B,2500)
CALL BURG(BPF,N+1,A,IP,VARXY)
CALL CHANGEFFT(B,A,11,MAX)
XSMAX=(XMAX*YMAX)**2*VARX*VARY/VARXY*fs
DO 250 I=-32,-1
250  WRITE(7,997)BINDEL,FLOAT(I)/32. ,CABS(1./B(2048+I))/SQRT(XSMAX)*8.
*,CABS(1. /B(2048+I))
DO 300 I=0,32
300 WRITE(7,997)BINDEL,FLOAT(I)/32. ,CABS(1. /B(I))/SQRT(XSMAX)*8.
,CABS(1. /B(I))
CLOSE(7)
STOP

*

997 FORMAT(1X,I14,2X,E13.6,2X,E13.6,2X,E13. 6)
END
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oNoNeoRoNoNoNo RO RS NS N ]

100

oNoNoNsNoNsNoNoNO N RoN o]

SIGNAL GENERATER

INPUT
N - NUMBER OF DATA POINTS
F1,F2 - FREQUENCY OF 1ST,2ND SIGNAL
AMP1,AMP2-FREQUENCY OF 1ST,2ND SIGNAL
QUTPUT

A(N) - SIGANL

SUBROUTINE SIGNAL(B,F,FS,D,SNR,ISEED,ID,NOISE)

COMPLEX B(-128:255)

REAL A(0:1)

INTEGER SNR,D

PI=ACOS(~1.)

DATA A/0.,0./

SIGMA=1.

A(0)=SQRT(2. *10. **(SNR/10))
IF(NOISE.EQ.1) A(0)=0.

DO 100 I=-128,255
M=(I1-D)/128
IF(I. LT.D.OR. M. NE. 0) M=1
T=AMOD(F*FLOAT(I-D),FS)
CALL GAUSS(ISEED,SIGMA,O0. ,RANDOM)
IF(ID.EQ.0) THEN

X=COS( 2. *PI*T/FS)*A(M)+RANDOM
ELSE
X=SIN(2.*PI*T/FS)*A(M)+RANDOM

ENDIF
B(I)=CMPLX(X,0.)

RETURN

END

BURG ALGORITHM

INPUT
N - NUMBER OF DATA POINTS
X - INPUT SIGNAL
OUTPUT
IP - ORDER OF AR
ACO: IP)- AR COEFFICIENTS
VAR - DRIVING NOISE VARIATION

SUBROUTINE BURGAR(X,N,A,IP,VAR)

COMPLEX X(N),A(0:N),EFK(500),EBK(500)

COMPLEX EFK1(500),EEK1(500),AA(20,20),SUMN,SUMD
REAL RHO(O0:80),FPE(0: 80)

INTEGER START

RHO( 0)=0.

FPE(0)=1.E64

AC0)=CMPLX(1.,0.)

IP=1

LA I R N I I ko L X i ey 1 4

T ED L G M R SR R IS W W T G T W AR W N T G W R T D NN WS N WD e W MR e TR R G WS GE G TH SR AL M GE GD SE SR D S TP L T O W W W T O W o e PP
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START=1
DO 10 I=1,N
10 RHO(0)=RHO(O)+CABS(X(I))*¥*2/FLOAT(N)
DO 20 I=2,N
EFK1(I)=X(I)
20 EBK1(I-1)=X(I-1)
LOOP
K=IP
SUMN=CMPLX(0. ,0.)
SUMD=CMPLX(0. ,0.)
DO 30 I=K+1,N
SUMN=SUMN+EFK1(I)*CONJG(EBK1(I-1))
30 SUMD=SUMD+CABS(EFK1(I)**2)+CABS(EBK1(I-1)%"2)
Co SUMD=SUMD+CABS(EFK1(I))**2+CABS(EBK1(I=-1))%*2
AA(K,K)=-2.*SUMN/SUMD
TEMP=1. ~CABS(AA(K,K) )**2
IF(TEMP. LE. 0.) TEMP=1.E-10
RHO(K)=TEMP*RHO(K-1)
IF(K.GT. 1) THEN
DO 40 J=1,K-1
40 AA(J,K)=AA(J,K-1)+AA(K,K)*CONJG(AA(K-J,K-1))
ENDIF
DO 60 I=K+2,N
EFK(I)=EFK1(I)+AA(K,K)*EBK1(I-1)
60 EBK(I-1)=EBK1(I-2)+CONJG(AA(K,K))*EFK1(I-1)
DO 70 I=K+2,N
EFK1(I)=EFK(I)
70 EBK1(I-1)=EBK(I-1)
IF(N-K.EQ. 1) THEN
FPE(K)=FPE(K-1)+1.
ELSE
FPL(K)=RHO(K)*FLOAT(N+1+K)/FLOAT(N-1-K)
ENDIF
IP=IP+1
UNTIL( FPE(K).GT.FPE(K-1).AND.K.GT. START)
IP=K-1
D3 100 I=1,IP
100 A(I)=AA(I,IP)
VAR=RHO(IP)
RETURN
END
(O e S b
C %
c BURG ALGORITHM
c INPUT
c N - NUMBER OF DATA POINTS
c X - INPUT SIGNAL
c 1P - OXDER OF AR s
c OUTPUT
c A(0: IP)- AR CCEFFICIENTS
C VAR - DRIVING NOISE VARIATINN *
C o
[ T T T
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SUBROUTINE BURG(X,N,A,IP,VAR)
COMPLEX X(N),A(0:N),EFK(500),EBK(500)
COMPLEX EFK1(500),EBK1(500),AA(20,20),SUMN,SUMD
REAL RHO(0:80),FPE(0: 80)
INTEGER START
RHO(0)=0.
A(0)=CMPLX(1.,0.)
DO 10 I=1,N
RHO( 0)=RHO( 0)+CABS(X(I))*¥*2/FLOAT(N)
DO 20 I=2,N
EFK1(I)=X(I)
EBK1(I-1)=X(I-1)
DO 1000 K=1,IP
SUMN=CMPLX(O0. ,0. )
SUMD=CMPLX( 0. ,0. )
DO 30 I=K+1,N
SUMN=SUMN+EFK1( I)*CONJG(EBK1(I-1))
SUMD=SUMD+CABS(EFK1( 1) )**2+CABS(EBK1(I-1))%*2
AA(K,K)=-2. *SUMN/SUMD
TEMP=1. -CABS(AA(K,K) )*¥2
IF(TEMP. LE. 0. ) TEMP=1.E-10
RHO(K)=TEMP*RHO(K-1)
IF(K.GT. 1) THEN
DO 40 J=1,K-1
AA(J,K)=AA(J,K-1)+AA(K,K)*CONJG(AA(K-J,K-1))
ENDIF
DO 60 I=K+2,N
EFK(I)=EFK1(I)+AA(K,K)*EBK1(I-1)
EBK(I-1)=EBK1(I-2)+CONJG(AA(K,K))*EFK1(I-1)
DO 70 I=K+2,N
EFK1(I)=EFK(I)
EBK1(I-1)=EBK(I-1)
CONTINUE
DO 100 I=1,IP
ACI)=AA(I,IP)
VAR=RHO(IP)
RETURN
END

CHANGE FFT

INPUT

B - AR COEFFICIENTS

A - TEMPORARY USING ARRAY

ISIZE - ALOG(FFT DATA POINTS)/ALOG2
OUTPUT

>
[

POWER SPECTRUM
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100
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200

SUBROUTINE CHANGEFFT(A,B,ISIZE,K)
COMPLEX A(O:2%*ISIZE-1),B(0: 2**ISIZE~1)
INTEGER REVRSE
PI=ACOS(-1.)
N=2%*ISIZE-1
K=0
FS=FLOAT(N+1)
CALL FFT(N,ISIZE,A,B,FS)
CALL FINDMAX(A,N,K)

RETURN
END
FINDMAX
INPUT
N - NUMBER OF SPECTRUM POINTS(N+1)
A - POWER SPECTRUM
OUTPUT
MAX - ARRAY INDEX OF MAXIMUM POWER SPECTRUM

SUBROUTINE FINDMAX(A,N,MAX)
COMPLEX A(O0:N)
MAX=0
AMAX=1.E66
DO 100 I=0,N
IF(CABS(A(I)).LT. AMAX) THEN
MAX=1
AMAX=CABS(A(I))
ENDIF
CONTINUE
RETURN
END

PRI R R R N A e ek L L L L L E ey b Sy |

REVERSE
BIT REVERSE ORDER INDEX CHANGING SUBROUTINE
INPUT
N - ARRAY INDEX
ISIZE - ALOG(FFT DATA POINTS)/ALOG2
OUTPUT
REVERSE- BIT REVERSE ORDER INDEX

INTEGER FUNCTION REVRSE(N,ISIZE)
INTEGER A(20)
DO 200 I=1,ISIZE
A(TI)=MOD(N,2)
N=N/2
CONTINUE
REVRSE=0
DO 300 I=1,ISIZE
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200
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REVRSE=REVRSE+A(I)*2%*(ISIZE-I)

CONTINUE
RETURN
END
DFT
COOLEY - TUKEY ALGORITHM
INPUT
N - NUMBER OF DATA POINTS
ISIZE - ALOG(N)/ALOG2
A - BIT REVERSE ORDER INDEXED TIME DOMAIN
B - TEMPORARY ARRAY
OUTPUT
A - FREQUENCY DOMAIN

SUBROUTINE DFT(N,ISIZE,A,B)
COMPLEX A(0:N),B(0:N),W
PI=ACOS(-1.)
DO 500 I1=1,ISIZE
ISAGE1=2%%(I1-1)
ISTAGE=2%"11
DO 200 I=0,N
ITEST=MOD( I, ISTAGE)
IF(ITEST. GT. ISAGE1) THEN
K=ITEST-ISAGE1
THEATA=2. *PI*FLOAT(K) /FLOAT( ISTAGE)
T1=SIN(THEATA)
T2=COS( THEATA)
IF(ABS(T1).LT. 1E-5) T1=0
IF(ABS(T2). LT. 1E-5) T2=0
W=CMPLX(T2,~-T1)
ACT)=ACI)*W
ENDIF
CONTINUE
DO 300 I=0,N
ITEST=MOD(I,ISTAGE)
IF(ITEST. GE. ISAGE1) THEN
B(I)=-A(I)+A(I-ISAGE1)
ELSE
B(I)=A(I)+A(I+ISAGE1)
ENDIF
CONTINUE
DO 400 I=0,N
A(I)=R(I)
CONTINUE
CONTINUE
RETURN
END
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Creecmmcmrcecmcccemcccmcccmccasccecacrccmmcmceccmcmeeeneeecee——m—————-
C
C FFT
C 1. INDEX CHANGE
C 2.USE COOLEY TUKEY ALGORITHM
C INPUT
C N - NUMBER COF DATA POINTS
C ISIZE - ALOG(N)/ALOG2
C B - INPUT(TIME DOMAIN)
C FS - SAMPLING FREQUENCY
C OUTPUT
C A - FREQUENCY DOMAIN
C
[ T T D g UL
SUBROUTINE FFT(N,ISIZE,A,B,FS)
COMPLEX A(O:N),B(0:N)
INTEGER REVRSE
DO 100 I=0,N
K=I
100 A(REVRSE(K,ISIZE))=B(1I)
CALL DFT(N,ISIZE,A,B)
DO 200 I=0,N
200 A(I)=A(I)/FS
RETURN
END
(remcccomnmcccncceccreanrccccanscorre e cnccnacrecranseercnrercemerrnaereene.--
C
C CLEAR
C INPUT
C N - NUMBER OF DATA POINTS
C A,B - INPUT arrays
C OUTPUT
C A,B - reinitiallized arrays
C
[T T T T iy gy iy g b 4
SUBROUTINE CLEAR(A,B,N)
COMPLEX A(O:N),B(0:N)
DO 100 I=0,N
100 A(I)=B(I)=CMPLX(0.,0.)

RETURN
END
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